Устройство и ремонт кривошипно-шатунного механизма

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Устройство КШМ

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Подвижные и неподвижные части КШМ

Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

  • поршни и поршневые кольца;
  • шатуны;
  • поршневые пальцы;
  • коленчатый вал;
  • маховик.

Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

  • блок цилиндров;
  • головка блока цилиндров;
  • картер;
  • поддон картера;
  • крепежные детали и подшипники.

Картер и поддон картера двигателя

Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

Расположение и число цилиндров

На сегодняшний день существуют следующие наиболее популярные схемы:

  • рядное четырех- или шестицилиндровое положение;
  • V-образное шестицилиндровое положение под углом 90°;
  • VR-образное положение под меньшим углом;
  • оппозитное положение (поршни двигаются навстречу друг другу с разных сторон);
  • W-образное положение с 12 цилиндрами.

В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

Головка блока цилиндров

К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

Цилиндры

В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

Головка блока цилиндров

Цилиндр сверху закрыт головкой.

Головка цилиндра вместе с боковыми, стенками цилиндра образует замкнутое пространство, в котором происходит рабочий цикл двигателя. Со стороны, обращенной к цилиндру, в головке выполняется особой формы полость, образующая камеру сгорания.

Так как цилиндры двигателя отливаются в виде одного блока, то и их головки изготовляются в виде общей отливки, называемой головкой блока цилиндров. Материалом для головок блока цилиндров служит обычно серый чугун или алюминиевые сплавы. Головка, изготовленная из алюминиевого сплава, обладает повышенной теплопроводностью. Установка такой головки приводит к снижению температуры рабочей смеси в цилиндрах двигателя в конце такта сжатия, позволяет превысить степень сжатия и, следовательно, мощность двигателя, не нарушая нормального режима работы двигателя.

Головка блока цилиндров и блок цилиндров соединяются посредством болтов и шпилек. Между блоком цилиндров и их головкой устанавливается прокладка, предотвращающая пропуск газов и протекание охлаждающей жидкости в местах стыка.

Конструкция блока цилиндров и головки блока в большой степени зависит от типа и расположения механизма газораспределения. Если применяется клапанный механизм газораспределения с нижним расположением клапанов в блоке цилиндров, то в конструкции блока предусматривается клапанная коробка с каналами для подвода горючей смеси и отвода отработавших газов и со сверлениями для направляющих втулок клапанов. Если применяется клапанный механизм с верхним расположением клапанов (подвесные клапаны), то клапаны, их направляющие втулки, впускные и выпускные каналы размещаются в головке блока цилиндров.

Обслуживание КШМ

Обслуживание КШМ заключается в постоянном контроле креплений и подтягивании ослабевших гаек и болтов картера, а также головки блока цилиндров. Болты крепления головки блока и гайки шпилек следует подтягивать на разогретом моторе в определенной последовательности.

Двигатель следует содержать в чистоте, каждый день протирать или промывать кисточкой, смоченной в керосине, после этого протирать сухой ветошью. Необходимо помнить, что грязь, пропитанная маслом и бензином, представляет серьезную опасность для возгорания при наличии каких–либо неисправностей в системе зажигания двигателя исистеме питания двигателя, также способствует образованию коррозии.

Периодически нужно снимать головку блока цилиндров и удалять весь нагар, об­ра­зо­вав­ший­ся в камерах сгорания.

Нагар плохо проводит тепло. При определенной величине слоя нагара на клапанах и поршнях отвод тепла в охлаждающую жидкость резко ухудшается, происходит перегрев мотора и уменьшение его мощностных показателей. В связи с этим, возникает потребность в более частом включении низких передач и потребность в топливе возрастает. Интенсивность формирования нагара полностью зависит от вида и качества используемого для мотора масла и топлива. Самое интенсивное нагарообразование выполняется при использовании низкооктанового бензина с достаточно высокой температурой конца выкипания. Стуки, возникающие в таком случае при работе двигателя, имеют детонационный характер и в конечном итоге приводят к уменьшению срока работоспособности двигателя.

Нагар необходимо удалять с камер сгорания, со стержней и головок клапанов, из впускных каналов блока цилиндров, с днищ поршней. Нагар рекомендуется удалять с по­мощью проволочных щеток или металлических скребков. Предварительно нагар раз­мяг­ча­ет­ся керосином.

При последующей сборке мотора прокладку головки блока необходимо ус­та­нав­ли­вать таким образом, чтобы сторона прокладки, на которой наблюдается сплошная окантовка перемычек между краешками отверстий для камер сгорания, была направлена в сторону головки блока.

Стоит учесть, что во время движения машины за городом в течении 60–ти минут со скоростью 65–80 км/ч происходит выжигание (очистка) цилиндров от нагара.

При должном регулярном обслуживании КШМ его срок службы продлится на долгие годы.

Попадание масла в охлаждающую жидкость

Наблюдается уменьшение уровня масла в двигателе, появляется масляная пленка в расширительном бачке, цвет охлаждающей жидкости меняется от серого до темно-коричневого.

Для проверки снять головку цилиндров, заполнить охлаждающую рубашку блока цилиндров водой и подать сжатый воздух в вертикальный масляный канал блока цилиндров (около отверстия под болт 5, см. рис. 22). Если в воде, заполняющей охлаждающую рубашку, наблюдаются пузырьки воздуха, то причины неисправности — раковины или трещины в перемычках между масляной магистралью и охлаждающей рубашкой блока цилиндров. В этом случае блок цилиндров необходимо заменить.

Заключение

В ходе исследования мы детально изучили конструкцию и
принцип работы кривошипно-шатунного механизма. Была рассмотрена каждая часть и
ее цель. Были также рассмотрены вопросы о возможных неисправностях,
повреждениях и методах их диагностики. Меры по замене изношенных частей
кривошипно-шатунного механизма были подробно описаны.

Проведенные исследования не позволяют детально описать все
аспекты работы и функционирования кривошипно-шатунного механизма. Однако,
исходя из поставленной цели, мы полностью раскрыли основные понятия, термины и
структуру кривошипно-шатунного механизма.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Автомастер Гидрикофф
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: