Линза френеля: описание и практическое применение

Проецирующие системы

Проецирующие системы состоят либо из эллиптического отражателя, либо из сочетания параболического отражателя и конденсора, направляющего свет на коллиматор, который может также быть дополнен оптическими аксессуарами. После чего свет проецируется на плоскость.

Системы прожекторов: равномерно освещенный коллиматор (1) направляет световой поток через систему линз (2). Слева — параболический отражатель, с высоким показателем светоотдачи, справа — конденсор, позволяющий добиться высокой разрешающей способности.

Размер изображения и угол света определяется особенностями коллиматора. Простые шторки или ирисовые диафрагмы, формируют световые лучи разных размеров. Контурные маски могут использоваться для создания различныз контуров луча света. Проецировать логотипы или изображения можно с помощью гобо-линзы с нанесёнными на них рисунками.

Различные углы света или размер изображения может выбираться в зависимости от фокусного расстояния линз. В отличие от осветительных приборов с применением линз Френеля, здесь представляется возможным создать световые лучи с четкими контурами. Мягких контуров можно достичь смещением фокусировки.

Примеры дополнительных аксессуаров (слева направо): линза для создания широкого светового луча, скульптурная линза, придающая лучу овальную форму, канавчатый дефлектор и «сотовая линза», уменьшающая слепящий эффект.

Ступенчатые линзы преобразуют световые лучи таким образом, что они находятся где-то между «ровным» светом линз Френеля и «жестким» светом плоско-выпуклой линзы. У ступенчатых линз сохранена выпуклая поверхность, однако со стороны плоской поверхности сделаны ступенчатые углубления, образующие концентрические круги.

Лицевые части ступеней (подступени) концентрических кругов часто светонепроницаемы (либо закрашены, либо имеют выщербленную матовую поверхность), что позволяет отсечь рассеянное излучение лампы и сформировать пучок параллельных лучей.

Прожекторы с линзой Френеля формируют неравномерное световое пятно с мягкими краями и слабым ореолом вокруг пятна, благодаря чему легко смешиваются с другими источниками света, создавая естественную световую картину. Именно поэтому прожекторы с линзой Френеля используются в кино.

Свет от прожектора, оснащенного линзой Френеля.

Прожекторы с плосковыпуклой линзой по сравнению с прожекторами с линзой Френеля формируют более равномерное пятно с менее выраженным переходом на краях светового пятна.

Свет от прожектора, оснащенного плосковыпуклой линзой.

на наш блог, чтобы узнать новое об устройстве светильников и светодизайне. 

Отрасли использования изобретения

Одним из способов применения данного прибора в привычной жизни можно считать парковочную линзу Френеля, которую приклеивают как на лобовое, так и на заднее стекло автомобиля для удобства парковки. С помощью особого расположения борозд, образующих прибор, изображение через него кажется намного меньше, чем в реальной жизни. Поэтому автомобилистам удобно ориентироваться на него, чтобы избегать случайных столкновений с другими машинами. Обзор при этом расширяется.

Также линзу Френеля пытались применять при изготовлении объективов для фотоаппаратов, однако после долгих попыток данную технологию так и не смогли внедрить в массовое производство.

Итак, линза Френеля выполняла изначально две функции:

1) уменьшала вес линзы т.к. если линзу делать стандартной формы, то, например, линза для маяка может весить и пару тонн.

2) собирала весь свет в пучок, сохраняя мягкие границы пучка света. Это тоже использовалось на маяках, так как позволяло светить очень ярко.

В дальнейшем оба этих свойства были успешно использованы кинематографом, в том числе Голливудом. А так как Голливуд прославился на весь свет своими фильмами, то и свет стал называться «голливудским».

Иллюстрация из книги «Hollywood portraits». Весьма, кстати, полезная книга. В ней описана идеология работы с источниками, оснащенными линзами Френеля (ссылка в конце статьи). Также принято их называть спотами, т.к. они дают пятно.

Работа со светом пятнами — это профессиональная работа фотографа. Пятна с мягко растушеванными границами плавно перетекают друг в друга, позволяя сохранять естественность светотеневого рисунка.

здесь два пятна света: оранжевый и синий, которые мягко перетекают друг в друга, почти не гася друг друга

на фото: на заднем плане 11 спотов, которые формируют букву P (Скорее всего от Paramount). Такое возможно только в крупных киностудиях.

Приборы для постоянного света существовали еще с начала 20-ого века, а что же со вспышками? Ведь постоянный свет требует длинных выдержек, сильно греет и с ним неудобно работать, используя цветные гели т.к. падает мощность.

У вспышек нет таких недостатков и многие серьезные производители выпустили свои варианты спот-приборов. Например, у любимого мной Broncolor есть аж два таких прибора.

Broncolor Pulsospot 4

и, основной прибор с линзой Френеля…

Broncolor Flooter

Устройство этих приборов не менялось уже целый век и оно довольно простое.

Внутри прибора Broncolor Pulsospot 4 две лампы: импульсная лампа-вспышка и галогеновая лампа пилотного света. За лампами расположен пароболический металлический отражатель, а сами лампы стоят на рельсах и могут перемещаться ближе к линзе Френеля или дальше. Отъезжая вглубь корпуса прибора мы получаем пятно меньшего диаметра и наоборот. Это все. Больше ничего нет, кроме вентилятора.
Угол светового конуса от 15 до 40 градусов.

линза Френеля

Broncolor Flooter — это вообще насадка на стандартную световую головку. Её преимущество в более крупной линзе Френеля, которая позволяет получить более крупное пятно. Также позволяет использовать лампы HMI (постоянный свет, металло-галогенная лампа).
Угол светового конуса от 15 до 70 градусов.

Цена первого и второго приборов около 5000 usd (приборы автономно не работают, нужно подключать к студийному генератору).

Свет мягкий, и очень управляемый. А прибор компактный. Оттого с ним вдвойне приятно работать. Моделей я с ним еще не снимал, так как получил его недавно.

Жалко, что он у меня пока один и не получится сделать снимок, полностью освещеннный пятнами света от таких приборов, имитируя голливудский свет. Но можно сделать свет от спота основным, а местами подсветить, скажем, портретной тарелкой и мягким рассеивателем, грубо имитируя спот.

Вот такой вот лёгкий студийный «инсайт», а вскорости, надеюсь, дополнить статью снимками моделей.

Книгу Hollywood portraits очень советую почитать. Там есть и схемы освещения. Ссылка на неё ниже.

ПОЛЕВЫЕ ЛИНЗЫ (FRENNEL SCREEN ‘BRIGHTENERS’)

Объектив F resnel можно использовать для перенаправления света по краям матового экрана обратной проекции на глаза зрителя, тем самым устраняя «горячую точку», часто наблюдаемую на таких экранах, путем осветления краев дисплея. Экраны этого типа включают экраны фокусировки камеры. В этом случае канавки должны быть обращены к источнику света; поэтому канавки часто должны быть направлены на более короткое сопряжение, исключение из обычного правила.

Конъюгатами для полевой линзы должны быть расстояние от линзы проектора на рифленой стороне и расстояние до зрителя на матовой поверхности. E-Tay Industrial Co., Ltd. может поставлять подходящие линзы с плоской стороной, либо оптически полированные, либо матовые.

Примечания

  1. 12 Френеля линза // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — С. 374—375. — 760 с. — ISBN 5-85270-101-7.
  2. Т. В. Стаценко, Ю. А. Толмачев, И. А. Шевкунов //Пространственно-временное преобразование ультракороткого импульса линзой Френеля. — Статья. — НИЧ ИТМО. — УДК 535.4
  3. Линзы Френеля в телескопах
  4. Give Me 3D TV, Without The Glasses (англ.), Tom’s Guide (9 January 2010). Проверено 30 апреля 2020.
  5. Une cellule solaire conçue avec Soitec établit un record mondial   d’efficacité
Это заготовка статьи по оптике. Вы можете помочь проекту, дополнив её.

Линзы Френеля

Линзы Френеля состоят из отдельных примыкающих друг к другу концентрических колецевидной формы сегментов. Свое название они получили в честь французского физика Огюстена Френеля, впервые предложившего и реализовавшего на практике такую конструкцию в осветительных приборах маяков. Оптический эффект от таких линз сопоставим с эффектом использования традиционных линз схожей формы или кривизны.

Однако линзы Френеля обладают рядом преимуществ, из-за которых они находят широкое применение в осветительных конструкциях. В частности, они значительно тоньше и дешевле в изготовлении по сравнению с собирающими линзами. Этими особенностями не преминули воспользоваться дизайнеры Франсиско Гомес Пас и Паоло Риццатто в работе над ярким и волшебным модельным рядом Luceplan Hope.

Выполненные из легкого и тонкого поликарбоната, «листы» Hope, как их называет Гомес Паз, представляют собой не что иное, как тонкие и большие рассеивающие линзы Френеля, создающие волшебное, искристое и объемное свечение за счет покрытия поликарбонатной пленкой, текстурированной микропризмами.

Паоло Риццатто так описал проект:
«Почему хрустальные люстры потеряли свою актуальность? Потому что слишком дороги, очень сложны в обращении и производстве. Мы же разложили саму идею на составляющие и осовременили каждую из них».

А вот что рассказал по этому поводу его коллега:
«Несколько лет назад наше внимание привлекли чудесные возможности линз Френеля. Их геометрические особенности позволяют получить те же оптические свойства, что и у обычных линз, но на абсолютно плоской поверхности лепестков

Однако применение линз Френеля для создания подобных уникальных продуктов, сочетающих в себе великолепный дизайнерский проект с современными технологическими решениями, встречается все же нечасто.

Широкое применение такие линзы нашли в освещении сцен прожекторами, где они позволяют создать неравномерное световое пятно с мягкими краями, отлично смешиваясь с общей световой композицией. В наше время они также получили распространение и в архитектурных схемах освещения, в тех случаях, если требуется индивидуальная регулировка угла света, когда расстояние между освещаемым объектом и светильником может меняться.

Оптические показатели линзы Френеля ограничены так называемой хроматической аберрацией, образующейся на стыках ее сегментов. Из-за неё на краях изображений предметов появляется радужная кайма. Тот факт, что кажущаяся недостатком особенность линзы была превращена в достоинство в очередной раз подчеркивает силу новаторской мысли авторов и их отношение к деталям.

Осветительная конструкция маяка, в которой применяются линзы Френеля. На снимке хорошо видна кольцевая структура линзы.

Снимки, с использование светильников с линзой Френеля, любезно предоставленные Вадимом (Blitzphoto)

Женский портрет Схема: рисующий 650 Вт, контровой 650 Вт, заполняющий 650 Вт через зонт, фоновый 300 Вт. Фотоаппарат Sony a7, объективы везде разные — SMS Pentax-M 75-150/4, SMS Pentax-M 100/2,8, SMS Pentax-A 135/2,8. Чувствительность 1000 ед., выдержка менялась в районе 1/160, диафрагма 5,6. Ретушь — плагин Portraiture

Мужской портрет Ретуши не было — поэтому хорошо видно как рисует направленный прожектор. Фотокамера опять Sony a7, оптика везде SMS Pentax-M 75-150/4, диафрагма 5.6, выдержка 1/125, чувствительность 500 ед. Схема освещения аналогична предыдущей съёмке, за некоторым исключением — на двух снимках в сцену введён ещё один светильник, Френель на 300 вт. На снимке 02 он с другим таким же светит на фон, а на снимке 04 подсвечивает руки.

Собирающие линзы

Собирающие линзы направляют свет от расположенного в фокальной точке источника в параллельный пучок света. Как правило, они применяются в осветительных конструкциях вместе с отражателем. Отражатель направляет световой поток в виде луча в нужном направлении, а линза — концентрирует (собирает) свет. Расстояние между собирающей линзой и источником света обычно варьируется, что позволяет регулировать угол, который нужно получить.

Система из и источника света и собирающей линзы (слева) и аналогичная система из источника и линзы Френеля (справа). Угол светового потока можно менять путем изменения расстояния между линзой и источником света.

Другие исследования

Жан Френель получил основную свою известность именно благодаря устройству, про которое было рассказано выше, но не стоит забывать, что этот великий ученый внес немаловажный вклад в научную деятельность в сфере оптики. Все свои эксперименты, подтверждающие научные труды, ученый проводил самостоятельно, без посторонней помощи. До 1817 года его труды посвящены исключительно продольным колебаниям света, но узнав об исследованиях, сделанных Юнгом, Жан Френель начинает изучать также и поперечные колебания света. Именно поперечные волны и становятся основной темой всех его последующих научных работ. Всю свою жизнь Френель постоянно испытывал нужду в средствах на свои исследования. Из-за тяжелых материальных условий ему приходилось самостоятельно конструировать высокоточное оборудование для проведения всех необходимых измерений. В 1823 году ученый открыл новые законы, связанные с изменениями поляризации света, а также его преломлении и отражении. Помимо линзы Френеля, к его изобретениям относят зеркала и призмы, названные его именем.

Благодаря своим успехам и достижениям в научной деятельности в 1823 году ученый становится членом Французской академии наук, расположенной в Париже. Уже через 2 года после этого он становится членом Королевского общества Англии. Помимо всего прочего, Френель внесен в список самых великих научных деятелей Франции. Скончался великий ученый в 39 лет от туберкулеза.

Биография

Жан Френель был рожден в небольшом городе неподалеку от столицы Франции, Парижа, в 1788 году. В детстве будущий великий ученый достаточно часто болел и не обладал хорошими отметками по учебе. Ходят слухи, что в возрасте восьми лет он даже не умел читать. Стоит отметить, что немного повзрослев, ребенок обнаружил в себе некоторые склонности к точным наукам, а именно к математике и геометрии. Выучившись на инженера, Жан Френель стал одним из проектировщиков региональных дорог и мостов, однако он понимал, что его кругозор и тяга к науке намного больше, чем то ремесло, которым он зарабатывал себе на жизнь. Особо притягивала юного ученого оптика. Таким образом, уже в 1818 году он сформулировал свою теорию, связанную с оптической интерференцией, которая и являлась фундаментом для изобретения линзы Френеля.

Описание

1: Поперечное сечение линзы Бюффона / Френеля. 2: Поперечное сечение обычной эквивалентной оптической силы. (Версия Бюффона была .)

Крупный план плоской линзы Френеля показывает концентрические круги на поверхности

Линза Френеля уменьшает количество необходимого материала по сравнению с обычной линзой, разделяя линзу на набор концентрических кольцевых секций. Идеальная линза Френеля имела бы бесконечное количество секций. В каждой секции общая толщина уменьшена по сравнению с эквивалентной простой линзой. Это эффективно разделяет непрерывную поверхность стандартной линзы на набор поверхностей одинаковой кривизны со ступенчатыми разрывами между ними.

В некоторых линзах изогнутые поверхности заменены плоскими поверхностями с различным углом в каждой секции. Такую линзу можно рассматривать как набор призм, расположенных по кругу, с более крутыми призмами по краям и плоским или слегка выпуклым центром. В первых (и самых больших) линзах Френеля каждая секция фактически представляла собой отдельную призму. Позже были произведены цельные линзы Френеля, которые использовались для автомобильных фар, тормозов, парковочных линз, линз указателей поворота и т. Д. В наше время фрезерное оборудование с компьютерным управлением (ЧПУ) или трехмерные принтеры могут использоваться для производства более сложных линз.

Конструкция линзы Френеля позволяет значительно уменьшить толщину (и, следовательно, массу и объем материала) за счет снижения качества изображения линзы, поэтому приложения для точной визуализации, такие как фотография, обычно по-прежнему используют более крупные обычные линзы.

Линзы Френеля обычно изготавливаются из стекла или пластика; их размер варьируется от большого (старые исторические маяки, размер метра) до среднего (средства чтения книг, проекторы видографа OHP) до малых ( экраны камер TLR / SLR , микрооптика ). Во многих случаях они являются очень тонкими и плоскими, почти гибкими, толщиной в 1 до 5 мм ( 1 / 32 до 3 / 16  в) диапазон.

Большинство современных линз Френеля состоят только из преломляющих элементов. Однако линзы маяков, как правило, содержат как преломляющие, так и отражающие элементы, причем последние находятся за пределами металлических колец, видимых на фотографиях. В то время как внутренние элементы представляют собой секции преломляющих линз, внешние элементы представляют собой отражающие призмы, каждая из которых выполняет два преломления и одно полное внутреннее отражение , избегая потерь света, возникающих при отражении от посеребренного зеркала.

Размеры линз маяка

Макапуу Пойнт Лайт

Маяк мыса Мерс ; линза Френеля первого порядка

Френель разработал шесть размеров линз для маяков, разделенных на четыре порядка в зависимости от их размера и фокусного расстояния. В современном использовании они классифицируются от первого до шестого порядка. Позднее был добавлен промежуточный размер между третьим и четвертым порядками, а также размеры выше первого и ниже шестого.

Объектив первого порядка имеет фокусное расстояние 920 мм ( 36+1 ⁄ 4  дюйма) и составляет около 2,59 м (8 футов 6 дюймов) в высоту и 1,8 м (6 футов) в ширину. Наименьший (шестой) порядок имеет фокусное расстояние 150 мм (6 дюймов) и высоту 433 мм ( 17 дюймов).+1 ⁄ 16  дюйма).

Самые большие линзы Френеля называются гиперизлучающими (или гиперрадиальными ). Один такой объектив имелся под рукой, когда было решено построить и оснастить фонарик Макапуу-Пойнт на Гавайях. Вместо того, чтобы заказывать новый объектив, там была использована огромная оптическая конструкция высотой 3,7 метра (12 футов) с более чем тысячей призм.

Заказ линз для маяков
Заказ Фокусное расстояние  (мм) Высота (м) Первая установка
Восьмой
Седьмой
Шестой 150 0,433
Пятая 187,5 0,541
Четвертый 250 0,722
3+1 ⁄ 2 375
В третьих 500 1,576 1825 г.
Второй 700 2,069
Первый 920 2,59 1823 г.
Мезорадиальный 1125
Гиперрадиальный 1330 1887 г.

Применение

Создание параллельного пучка света линзой Френеля (находится в центре)

Сечение плоско-выпуклой линзы. Поскольку оптический эффект достигается криволинейной поверхностью, часть материала линзы, не влияющая на кривизну, может быть удалена для получения более тонкой линзы. При этом линза становится ступенчатой и состоит из кольцевых зон

Основным недостатком линзы Френеля по сравнению с обычными линзами и традиционными объективами является высокий уровень паразитной засветки и разного рода «ложные изображения» из-за наличия переходных краевых участков между зонами, поэтому её использование для построения оптически точных изображений затруднено. Тем не менее уже есть положительный опыт построения и таких оптических систем. Перспективным направлением может быть построение космических телескопов диаметра в десятки и сотни метров с использованием линз Френеля на основе тонких мембран.

Линзы Френеля применяют:

  • в осветительных устройствах, особенно подвижных, для минимизации веса и затрат на перемещение;
  • в крупногабаритных фокусирующих системах морских маяков, в проекционных телевизорах, оверхед-проекторах (кодоскопах), фотовспышках, навигационных огнях, светофорах, железнодорожных линзовых светофорах и семафорных фонарях и фонарях пассажирских вагонов;
  • в основе современных безочковых 3D-телевизоров некоторых производителей (см. лентикулярный линзовый растр);
  • в шлемах виртуальной реальности;
  • в инфракрасных (пирометрических) датчиках движения охранной сигнализации;
  • в линзовых антеннах;
  • в оптико-локационной станции истребителя-бомбардировщика пятого поколения Lockheed Martin F-35 Lightning II.

В зеркальных фотоаппаратах линзу Френеля используют вместо плоско-выпуклой коллективной линзы, которая строит изображение выходного зрачка объектива в плоскости окуляра видоискателя. Таким образом достигается равномерная яркость изображения в пределах всего кадра и удобство визирования. Кольцевую структуру линзы маскируют матированием плоской поверхности, предназначенной для фокусировки объектива, а паразитное рассеивание не оказывает влияния на изображение.

Выпускают тонкие плоские лупы с размером до книжного листа, представляющие собой лист прозрачного пластика, на котором оттиснута линза Френеля. Линза Френеля в виде пластиковой плёнки, наклеенной на заднее стекло автомобиля, уменьшает мёртвую (невидимую) зону позади автомобиля при взгляде через зеркало заднего вида. Перспективным считается использование линз Френеля в качестве концентратора солнечной энергии для солнечных батарей, позволившее довести КПД солнечных элементов до 44,7 %.

Заключение

Оптический прибор, изобретенный Жаном Френелем, помог науке выйти на новый, до этого неизведанный уровень. Прибор оказался настолько удачным, что широко используется в промышленности и в быту по сей день. Жизнь Френеля – это отличный пример того, что даже при тяжелых материальных и бытовых условиях можно заниматься наукой и отдавать себя ей полностью. Такие люди достойны того, чтобы называться великими, ведь благодаря им и движется прогресс, появляются новые технологии, упрощающие нашу жизнь. Будем надеяться, что наша статья была вам полезной, а также вам было интересно познакомиться с биографией и изобретениями этого ученого.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Автомастер Гидрикофф
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector